Projective modules, Grothendieck groups and the Jacobson-Cartier operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes and the Cartier Operator

In this article, we present a new construction of codes from algebraic curves. Given a curve over a non-prime finite field, the obtained codes are defined over a subfield. We call them Cartier Codes since their construction involves the Cartier operator. This new class of codes can be regarded as a natural geometric generalisation of classical Goppa codes. In particular, we prove that a well-kn...

متن کامل

Projective Modules over Finite Groups

Serre [5] has recently proved a general theorem about projective modules over commutative rings. This theorem has the following consequence : If 7T is a finite abelian group, any finitely generated projective module over the integral group ring Zir is the direct sum of a free module and an ideal of Zir. The question naturally arises as to whether this result holds for nonabelian groups x. Serre...

متن کامل

The Rank of the Cartier Operator on Cyclic Covers of the Projective Line

We give a lower bound on the rank of the Cartier operator of Jacobian varieties of hyperelliptic and superelliptic curves in terms of their genus.

متن کامل

ON PROJECTIVE L- MODULES

The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...

متن کامل

On two generalizations of semi-projective modules: SGQ-projective and $pi$-semi-projective

Let $R$ be a ring and $M$ a right $R$-module with $S=End_R(M)$. A module $M$ is called semi-projective if for any epimorphism $f:Mrightarrow N$, where $N$ is a submodule of $M$, and for any homomorphism $g: Mrightarrow N$, there exists $h:Mrightarrow M$ such that $fh=g$. In this paper, we study SGQ-projective and $pi$-semi-projective modules as two generalizations of semi-projective modules. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 1973

ISSN: 2156-2261

DOI: 10.1215/kjm/1250523324